
[BREZANI, ZABOVSKY, Vol. 6, Issue 2: September 2022] ISSN: 1339-9470

ScienFIST.org © International Journal of Information Technologies, Engineering and Management Science

http://www.scienfist.org/

 [1]

INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES, ENGINEERING

AND MANAGEMENT SCIENCE

3D Graph Visualization Performance using Physical Engine

Alexander Brezáni *, Michal Zábovský **
* Faculty of Management Science and Informatics, University of Zilina, Slovak Republic

** University Science Park, University of Zilina, Slovak Republic

alexander.brezani@uniza.sk, michal.zabovsky@uniza.sk

Abstract
The visualization of complex data is one of the most challenging tasks of exploratory data analysis. Linked data are

usually visualized as complex graphs or networks. Due to the complexity of data, 2D projection based only on x and

y coordinates is complicated and does not allow natural interaction mechanism for additional data examination. 3D

visualization uses additional z dimension but requires some level of interaction and camera movement to reveal

occluded data. In this paper we are presenting 3D visualization approach based on physical engine provided by Unity

game engine to respect requirements for interaction, camera movement, and use of physical forces for data

spatialization. We will show advantages of this approach together with limitations based on game engine adaptation

for 3D graph visualization.

Keywords: graph visualization, networks, 3D visualization, data structures, Unity game engine

Introduction
Graph is an abstract representation of relations

among a given set of data entities. In mathematics,

graph theory is the study of graphs, which are

mathematical structures used to pairwise relations

between objects. [1] Formally, relations are called

edges and data entities vertices.

Since graphs are usually represented visually by

drawing, vertices and edges have their specific visual

representation defined by points/circles and lines. A

graph drawing is the special representation of graph

itself which can significantly improve overall

understanding of the problem represented by

underlying graph structure.

Graph visualization is very useful for better data

structure understanding and supports knowledge

discovery. There are tools for even general graph

visualization or graph visualization tools working with

relations specific to knowledge domain e.g. molecular

biology. One of the most generally used tools is Gephi

[2] which implements variety of graph visualization

algorithms, features for real-time visualization, graph

metrics, and other data oriented features.

Most of the methods for graph visualization are

based on 2D algorithms allowing to place vertices and

edges into the two-dimensional plane (node-link

layout) with respect to overall graph structure

readability. Usually, the orthogonal projection is used

to render the visualization. Due to the size and

complexity of data represented by graph (usually

referred as network), additional dimension

representing depth is added in 2.5D approach. Then

nodes are at different depths in that they have an

individual depth value for position. [3]

3D graph visualizations are rendered with a three-

dimensional projection and usually require some level

of camera movement to reveal occluded data. [4]

Moreover, some advanced algorithms for 3D

visualizations use force-directed approach to generate

layout for overall graph spatialization. [5]

Requirements for camera movement, interaction

with user and physically based spatialization defines

basic framework for 3D graph visualization. All the

mentioned functionalities are provided by game

engines, together with advanced physical and

interaction model, collision detection and real-time

http://www.scienfist.org/

[BREZANI, ZABOVSKY, Vol. 6, Issue 2: September 2022] ISSN: 1339-9470

ScienFIST.org © International Journal of Information Technologies, Engineering and Management Science

http://www.scienfist.org/

 [2]

user interaction with advanced camera-based

operations.

In presented paper we will show implementation

of 3D graph visualization in the Unity game engine [6]

with the respect to defined requirements. We will

discuss main limitations of this approach and show

experimental evaluation of basic performance metrics.

The paper is structured as follows, Methodology

and tools explains Unity game engine environment

and physical engine features used for 3D graph

visualization, Evaluation criteria define performance

criteria for successful graph visualization, Graph

definition in 3D and Force-directed data

spatialization sections describe graph creation inside

the game engine, Experimental evaluation and Results

present our findings and experimental results, and

finally Conclusion concludes the article with

additional work summary.

Methodology and tools

Game engines provide physical framework with

implemented physical model, collision detection,

physical interactions, and scene user interaction by

using cameras, lights, special effects, and audio. We

choose Unity engine for 3D graph visualization with

respect to future implantation in existing immersive

CAVE system which is based on Unity.

Unity implements physical engine optimized for

3D environments. The use of physical engine for

force-directed graphs provides time efficient

workflow for graph definition together with 3D layout

definition. Physical engine embedded in Unity and

other game engines is designed to handle massive

numbers of everchanging objects affected by

environment’s physical forces. However, special

importance must be given to the scene design to not

overpopulate it with unnecessary objects.

Overpopulated scene, even with optimized physical

engine, can cause unstable application’s behavior and

increase the time required to compute stable state of

graph.

To define performance boundaries for

visualization in Unity, we defined and performed

series of tests on various scenarios to find optimal

number of elements in virtual scene. In each scenario,

graph of network was visualized in 3D space with

various size, number of nodes, number of edges and

spatial limitations (space used for graph visualization).

Evaluation criteria
Overall rendering performance is one of the

main criteria in interactive 3D visualization.

Underlaying performance of selected framework or

game engine such as Unity or Unreal Engine will

directly affect the time required for completing

visualization, which can result in positive or negative

user experience. Visualization in 3D space requires

certain level of user interaction, otherwise it is not

much different from common 2D projection. When

interaction with model happens, framework or engine

should update visualized environment which comes

with certain cost in form of CPU, GPU, and RAM

resources. Update speed after interaction is influenced

by these resources, as well as engine’s ability to utilize

them, therefore choosing the right engine or

framework is crucial for ensuring fast and responsive

application.

Graph definition in 3D
Visualization of graphs in 3D space can be

difficult for people with decent amount of knowledge

about graph layout and 3D space and even harder for

beginners, which do not know basics of 3D layout. To

minimize user’s requirements for skills to create

readable layout we use force-directed algorithms

which allows user to create 2D or 3D layouts without

prior knowledge and experience. Force-directed

graphs apply physical properties, like gravity, weight,

speed, and many others, to nodes and edges. Resulted

layout is determined by strength of applied forces and

static properties of nodes and edges.

However, nodes and edges in force-directed

graphs are constantly moving until physical forces

reach balanced state. Time to reach balanced state is

different in various graphs and depends on multiple

metrics. Rendering time is directly influenced by size

of graph, number of nodes and edges, strength of edges

and many others which interfere with physical forces.

Utilization of CPU, GPU and RAM is another

important factor to consider. Game engines work with

physical engine natively and do most of the

calculations without direct input from programmer or

user. However, calculations could stress resources to

the point where application become slow and

unusable. Based on the method used for initial

placement of nodes and edges, the time required for

stable state could differ. Without any preprocessing

we can position nodes in space on coordinates x=0,

y=0, z=0 which is also called space origin. This

approach ensures that nodes should not be biased by

their initial position. Nodes starting at zero coordinates

are more likely to travel further distance until they

reach their final position and stabilize. Each

unnecessary move of nodes or edges using resources

which could be used to process other nodes. Those, the

decision about the need for future node processing is

http://www.scienfist.org/

[BREZANI, ZABOVSKY, Vol. 6, Issue 2: September 2022] ISSN: 1339-9470

ScienFIST.org © International Journal of Information Technologies, Engineering and Management Science

http://www.scienfist.org/

 [3]

quite important from the point of overall visualization

efficiency.

Another approach uses random initial position

for each node. This approach has the potential to

eliminate initial delay (referred in game engines as the

lag), because nodes does not have to be rendered at

once. Additionally, the sum of forces that are applied

to each node is in most cases smaller than the sum

forces in first approach because distance between

nodes is greater.

Both methods for initial nodes placement must

be considered carefully mostly because of expected

visualization performance. Node placement to the

space origin is in principle better for the application of

forces to each node and the final quality of rendered

graph visualization. It is easier for the implementation,

since all of the work is performed by the physical

engine itself. Major drawback comes with the initial

delay or lag caused by the fact, that initial application

of all forces for nodes from one point needs significant

computing resources. Another problem is caused by

the physical principle of the graph reorganization.

Since the application of forces is physically based,

nodes tend to accelerate quickly and thus some

additional time and resources are needed for nodes

deceleration and reorganization.

Other methods for initial node placement include

graph metrics defined for each general graph defined

by the graph theory. One of important metrics of graph

is the centrality which is represented by number or

ranking for each node within the graph corresponding

to its network position. Applications include

identifying the most influential person(s) in a social

network, key infrastructure nodes in the Internet or

urban networks, super-spreaders of disease, and brain

networks. [7] For legible graph is recommended to

calculate centrality beforehand and then use calculated

information to create cleaner layout [8, 9].

Force-directed data spatialization
The force in force-directed graphs can be

represented in different ways. Unity engine provides

multiple options to use such as 1) physical engine by

using force functions, 2) spring joints implemented in

Unity, or 3) other libraries.

Physical engine contains functions which allows

to apply force to game objects. However, they are not

suitable for simple visualization, because force is

applied either once or for each rendered frame. If the

force is applied for each frame, final layout of nodes

will most likely end up as one cluster. If graph contains

edges with repulsive forces, layout can result in one

cluster or layout where distance between nodes has

tendency to increase into maximal available distance

or infinity.

In our application we used spring joints to

represent attractive and repulsive forces. Spring joints

can represent repulsive and attractive force with

correctly set parameters. Furthermore, edges can be set

to maintain desired distance between nodes, which

results in cleaner visualization and can serve as

boundary which helps to visualize clusters.

Figure 1: Rendered force-directed graph

The Figure 1 shows final rendered graph created

in the Unity engine. Applied forces caused nodes to

split naturally into clusters displayed in different

colors. All the distances are result of the force

application and thus the structure of the resulted graph

can be interpreted separately according to appropriate

source of data and knowledge domain.

Experimental evaluation
For the experimental evaluation, we developed

application for evaluation of optimal number of nodes

and edges according to overall visualization and

rendering performance. The goal is to find optimal

ration of nodes and edges which Unity can calculate

without loss of time. Number of nodes and edges

rendered and computed in one scene defines

boundaries for future visualizations. To know how

sparse and connected graphs can be in one scene, set

of experimental scenarios were created in environment

that focus on game engine performance evaluation.

Nodes and edges are generated with random

properties such as color and position, to remove

possible bias caused by any specific dataset. We use

random positions to remove initial bias caused by

accumulated force which is applied when nodes are

positioned at the scene origin. Based on the type of

starting and end node, edges are created and the

adjective force on spring joint is set when both nodes

have same type. Otherwise, the repulsive force is set

when nodes have different types.

http://www.scienfist.org/

[BREZANI, ZABOVSKY, Vol. 6, Issue 2: September 2022] ISSN: 1339-9470

ScienFIST.org © International Journal of Information Technologies, Engineering and Management Science

http://www.scienfist.org/

 [4]

Results

To reach Unity game engine limits we define the

set of experiments to be performed. Stable and smooth

visualization are important factors for resulting

interactive experience but in our experiment, we focus

on time required to calculate stable layout. For each

scenario, graph made of x nodes is created with

different graph density. Each scenario was executed

100 times and final average time was computed.

Table 1 Rendering time for different networks

Scenario Nodes

[count]

Edges

[count]

Graph

density

[%]

Time

[s]

1 100 1237 25 27.74

2 100 2475 50 21.76

3 100 3712 75 32.08

4 250 7781 25 31.09

5 250 15562 50 41.08

6 500 31187 25 7.08

7 500 62375 50 8.50

Table 1 shows results from performed

experiments. Scenarios 1 to 4 show similar time for

graph layout calculation, but they also show that the

time does not depend on graph density. This is

confirmed by measured times for scenario 6 and 7

where the overall rendering time decreased

significantly. This is caused by the density inside

defined rendering boundaries where dense graphs

converge faster into the balanced state and causing less

unwanted oscillations that must be processed.

Graph density is important factor when it comes

to practical graph visualization. For dense graphs with

density above 50% loss of information is observed,

because edges are covering most of the space and hide

clusters and nodes which may be important. This can

be improved by additional alpha parameter for edges

and nodes based on their physical distance from user

or by some other techniques for multilayer

visualizations.

Conclusion and future work
Game engines limitations define basic bottlenecks

for 3D graph visualization. As shown in our article,

some limitations are not intuitive enough due to the

specific, complex physical environment implemented

by game engines. Performance metrics should be thus

defined according to experimental results obtained

from specific game engines and physical interaction

systems.

In future work, experiments will be expanded with

the use of different representations of edges.

Furthermore, we will be observing graph behavior in

segmented space where only part of the graph is

visualized at one time. This approach may show us

more options for future optimization of layout

computing and speed up the process necessary for

force directed algorithms.

Acknowledgements
"This publication was realized with support of

Operational Program Integrated Infrastructure 2014 - 2020

of the project: Innovative Solutions for Propulsion, Power

and Safety Components of Transport Vehicles, code ITMS

313011V334, co-financed by the European Regional

Development Fund".

References

[1] "Graph Theory," Wikipedia - The Free Encyclopedia,

[Online]. Available:

https://en.wikipedia.org/wiki/Graph_theory.

[Accessed 08 2022].

[2] "Gephi - The Open Graph Viz Platform," Gephi.org,

[Online]. Available: https://gephi.org/. [Accessed 08

2022].

[3] F. Mcgee, M. Ghoniem, G. Melancon and B. Pinaud,

"The State of the Art in Multi‐Layer Network

Visualization," in Computer Graphics Forum, 2019.

[4] "Graph Drawing," Wikipedia - The Free

Encyclopedia, [Online]. Available:

https://en.wikipedia.org/wiki/Graph_drawing.

[Accessed 08 2022].

[5] J. Mathieu, V. Tommaso, H. Sebastien and B.

Mathieu, "ForceAtlas2, a Continuous Graph Layout

Algorithm for Handy Network Visualization Designed

for the Gephi Software," PLOS ONE, vol. 9, no. 6,

2014.

[6] "Unity," Unity Technologies, [Online]. Available:

https://unity.com/. [Accessed 08 2022].

[7] "Centrality," Wikipedia - The Free Encyclopedia,

[Online]. Available:

https://en.wikipedia.org/wiki/Centrality. [Accessed 08

2022].

[8] J. M. Hernández and P. Van Mieghem, "Classification

of graph metrics," 2011.

[9] M. Zábovský, K. Matiaško and K. Zábovská,

"Database Exploration Using Metrics and

Visualization," in Zastosowania Internetu : praca

zbiorowa. - Dąbrowa Górnicza: Wyższa Szkoła

Biznesu, Dąbrowa Górnicza, 2012.

http://www.scienfist.org/

